Solar thermal energy (STE) is a technology for harnessing solar energy for thermal energy (heat). Solar thermal collectors are defined by the USA Energy Information Administration as low-, medium-, or high-temperature collectors. Low temperature collectors are flat plates generally used to heat swimming pools. Medium-temperature collectors are also usually flat plates but are used for creating hot water for residential and commercial use. High temperature collectors concentrate sunlight using mirrors or lenses and are generally used for electric power production. STE is different from photovoltaics, which convert solar energy directly into electricity. While only 600 megawatts of solar thermal power is up and running worldwide in October 2009 according to Dr David Mills of Ausra, another 400 megawatts is under construction and there are 14,000 megawatts of the more serious concentrating solar thermal (CST) projects being developed.

Thermal mass materials store solar energy during the day and release this energy during cooler periods. Common thermal mass materials include stone, concrete, and water. The proportion and placement of thermal mass should consider several factors such as climate, day-lighting, and shading conditions. When properly incorporated, thermal mass can passively maintain comfortable temperatures while reducing energy consumption. A solar chimney (or thermal chimney) is a passive solar ventilation system composed of a hollow thermal mass connecting the interior and exterior of a building. As the chimney warms, the air inside is heated causing an updraft that pulls air through the building. These systems have been in use since Roman times and remain common in the Middle East.

Active solar cooling can be achieved via absorption refrigeration cycles, desiccant cycles, and solar mechanical processes. In 1878, Auguste Mouchout pioneered solar cooling by making ice using a solar steam engine attached to a refrigeration device. Thermal mass, smart windows and shading methods can also be used to provide cooling. The leaves of deciduous trees provide natural shade during the summer while the bare limbs allow light and warmth into a building during the winter. The water content of trees will also help moderate local temperatures.

Solar thermal energy can be very useful in drying wood for construction and wood fuels such as wood chips for combustion. Solar is also used for food products such as fruits, grains, and fish. Crop drying by solar means is environmentally friendly as well as cost effective while improving the quality. The less money it takes to make a product, the less it can be sold for, pleasing both the buyers and the sellers. Technologies in solar drying include ultra low cost pumped transpired plate air collectors based on black fabrics. Solar thermal energy is helpful in the process of drying products such as wood chips and other forms of biomass by raising the heat while allowing air to pass through and get rid of the moisture.


Solar cookers use sunlight for cooking, drying and pasteurisation. Solar cooking offsets fuel costs, reduces demand for fuel or firewood, and improves air quality by reducing or removing a source of smoke.

The simplest type of solar cooker is the box cooker first built by Horace de Saussure in 1767. A basic box cooker consists of an insulated container with a transparent lid. These cookers can be used effectively with partially overcast skies and will typically reach temperatures of 50–100 C.

Concentrating solar cookers use reflectors to concentrate light on a cooking container. The most common reflector geometry's are flat plate, disc and parabolic trough type. These designs cook faster and at higher temperatures (up to 350 C) but require direct light to function properly.

The Solar Kitchen in Auroville, India uses a unique concentrating technology known as the solar bowl. Contrary to conventional tracking reflector/fixed receiver systems, the solar bowl uses a fixed spherical reflector with a receiver which tracks the focus of light as the Sun moves across the sky. The solar bowl's receiver reaches temperature of 150 C that is used to produce steam that helps cook 2,000 daily meals.

Many other solar kitchens in India use another unique concentrating technology known as the Scheffler reflector. This technology was first developed by Wolfgang Scheffler in 1986. A Scheffler reflector is a parabolic dish that uses single axis tracking to follow the Sun's daily course. These reflectors have a flexible reflective surface that is able to change its curvature to adjust to seasonal variations in the incident angle of sunlight. Scheffler reflectors have the advantage of having a fixed focal point which improves the ease of cooking and are able to reach temperatures of 450-650 C. Built in 1999, the world's largest Scheffler reflector system in Abu Road, Rajasthan India is capable of cooking up to 35,000 meals a day. By early 2008, over 2000 large cookers of the Scheffler design had been built worldwide.


Solar stills can be used to make drinking water in areas that clean water is not common. Solar distillation is necessary in these situations to provide people with purified water. Solar energy heats up the water in the still. The water then evaporates and condenses on the bottom of the covering glass.

High-temperature Collectors:

The efficiency of heat engines increases with the temperature of the heat source. To achieve this in solar thermal energy plants, solar radiation is concentrated by mirrors or lenses to obtain higher temperatures — a technique called Concentrated Solar Power (CSP). The practical effect of high efficiencies is to reduce the plant's collector size and total land use per unit power generated, reducing the environmental impacts of a power plant as well as its expense.

As the temperature increases, different forms of conversion become practical. Up to 600C, steam turbines, standard technology, have an efficiency up to 41%. Above this, gas turbines can be more efficient. Higher temperatures are problematic because different materials and techniques are needed. One proposal for very high temperatures is to use liquid fluoride salts operating between 700C to 800C, using multi-stage turbine systems to achieve 50% or more thermal efficiencies. The higher operating temperatures permit the plant to use higher temperature dry heat exchangers for its thermal exhaust, reducing the plant's water use — critical in the deserts where large solar plants are practical. High temperatures also make heat storage more efficient, because more watt-hours are stored per unit of fluid.

Since the CSP plant generates heat first of all, it can store the heat before conversion to electricity. With current technology, storage of heat is much cheaper and more efficient than storage of electricity. In this way, the CSP plant can produce electricity day and night. If the CSP site has predictable solar radiation, then the CSP plant becomes a reliable power plant. Reliability can further be improved by installing a back- up system that uses fossil energy. The back-up system can reuse most of the CSP plant, which decreases the cost of the back-up system.

System Designs:

Parabolic Trough Designs:

Parabolic trough power plants use a curved, mirrored trough which reflects the direct solar radiation onto a glass tube containing a fluid (also called a receiver, absorber or collector) running the length of the trough, positioned at the focal point of the reflectors. The trough is parabolic along one axis and linear in the orthogonal axis. For change of the daily position of the sun perpendicular to the receiver, the trough tilts east to west so that the direct radiation remains focused on the receiver. However, seasonal changes in the in angle of sunlight parallel to the trough does not require adjustment of the mirrors, since the light is simply concentrated elsewhere on the receiver. Thus the trough design does not require tracking on a second axis.

A fluid (also called heat transfer fluid) passes through the receiver and becomes very hot. Common fluids are synthetic oil, molten salt and pressurised steam. The fluid containing the heat is transported to a heat engine where about a third of the heat is converted to electricity.

Power Tower:

Power towers (also known as 'central tower' power plants or 'heliostat' power plants) capture and focus the sun's thermal energy with thousands of tracking mirrors (called heliostats) in roughly a two square mile field. A tower resides in the centre of the heliostat field. The heliostats focus concentrated sunlight on a receiver which sits on top of the tower. Within the receiver the concentrated sunlight heats molten salt to over 1000 degrees Fahrenheit. The heated molten salt then flows into a thermal storage tank where it is stored, maintaining 98% thermal efficiency, and eventually pumped to a steam generator. The steam drives a standard turbine to generate electricity. This process, also known as the "Rankine cycle" is similar to a standard coal-fired power plant, except it is fuelled by clean and free solar energy.

Dish Designs:

A dish system uses a large, reflective, parabolic dish (similar in shape to satellite television dish). It focuses all the sunlight that strikes the dish up onto to a single point above the dish, where a receiver captures the heat and transforms it into a useful form. Typically the dish is coupled with a Stirling engine in a Dish- Stirling System. These create rotational kinetic energy that can be converted to electricity using an electric generator.

The advantage of a dish system is that it can achieve much higher temperatures due to the higher concentration of light (as in tower designs). Higher temperatures leads to better conversion to electricity and the dish system is very efficient on this point. However, there are also some disadvantages. Heat to electricity conversion requires moving parts and that results in maintenance. In general, a centralised approach for this conversion is better than the decentralised concept in the dish design. Second, the (heavy) engine is part of the moving structure, which requires a rigid frame and strong tracking system. Furthermore, parabolic mirrors are used instead of flat mirrors and tracking must be dual- axis.

Fresnel Reflectors:

A linear Fresnel reflector power plant uses a series of long, narrow, shallow-curvature (or even flat) mirrors to focus light onto one or more linear receivers positioned above the mirrors. On top of the receiver a small parabolic mirror can be attached for further focusing the light. These systems aim to offer lower overall costs by sharing a receiver between several mirrors (as compared with trough and dish concepts), while still using the simple line-focus geometry with one axis for tracking. This is similar to the trough design (and different from central towers and dishes with dual-axis). The receiver is stationary and so fluid couplings are not required (as in troughs and dishes). The mirrors also do not need to support the receiver, so they are structurally simpler. When suitable aiming strategies are used (mirrors aimed at different receivers at different times of day), this can allow a denser packing of mirrors on available land area.

Fresnel Lenses:

Prototypes of Fresnel lens concentrators have been produced for the collection of thermal energy by International Automated Systems ( . No full-scale thermal systems using Fresnel lenses are known to be in operation, although products incorporating Fresnel lenses in conjunction with photovoltaic cells are already available.

The advantage of this design is that lenses are cheaper than mirrors. Furthermore, if a material is chosen that has some flexibility, then a less rigid frame is required to withstand wind load.

Heat Exchange:

Heat in a solar thermal system is guided by five basic principles: heat gain; heat transfer; heat storage; heat transport; and heat insulation. Here, heat is the measure of the amount of thermal energy an object contains and is determined by the temperature, mass and specific heat of the object.

Heat gain is the heat accumulated from the sun in the system. Solar thermal heat is trapped using the greenhouse effect; the greenhouse effect in this case is the ability of a reflective surface to transmit short wave radiation and reflect long wave radiation. Heat and infrared radiation (IR) are produced when short wave radiation light hits the absorber plate, which is then trapped inside the collector. Fluid, usually water, in the absorber tubes collect the trapped heat and transfer it to a heat storage vault.

Heat is transferred either by conduction or convection. When water is heated, kinetic energy is transferred by conduction to water molecules throughout the medium. These molecules spread their thermal energy by conduction and occupy more space than the cold slow moving molecules above them. The distribution of energy from the rising hot water to the sinking cold water contributes to the convection process. Heat is transferred from the absorber plates of the collector in the fluid by conduction. The collector fluid is circulated through the carrier pipes to the heat transfer vault. Inside the vault, heat is transferred throughout the medium through convection.

Heat storage enables solar thermal plants to produce electricity during hours without sunlight. Heat is transferred to a thermal storage medium in an insulated reservoir during hours with sunlight, and is withdrawn for power generation during hours lacking sunlight. Thermal storage mediums will be discussed in a heat storage section. Rate of heat transfer is related to the conductive and convection medium as well as the temperature differences. Bodies with large temperature differences transfer heat faster than bodies with lower temperature differences.

Heat Storage:

Heat storage allows a solar thermal plant to produce electricity at night and on overcast days. This allows the use of solar power for base-load generation as well as peak power generation, with the potential of displacing both coal and natural gas fired power plants. Additionally, the utilisation of the generator is higher which reduces cost.

Heat is transferred to a thermal storage medium in an insulated reservoir during the day, and withdrawn for power generation at night. Thermal storage media include pressurised steam, concrete, a variety of phase change materials, and molten salts such as sodium and potassium nitrate.

Steam Accumulator:

The PS10 solar power tower stores heat in tanks as pressurised steam at 50 bar and 285C. The steam condenses and flashes back to steam, when pressure is lowered. Storage is for one hour. It is suggested that longer storage is possible, but that has not been proven yet in an existing power plant.

Molten Salt Storage:

A variety of fluids have been tested to transport the sun's heat, including water, air, oil, and sodium, but molten salt was selected as best. Molten salt is used in solar power tower systems because it is liquid at atmosphere pressure, it provides an efficient, low-cost medium in which to store thermal energy, its operating temperatures are compatible with today's high-pressure and high-temperature steam turbines, and it is non-flammable and non-toxic. In addition, molten salt is used in the chemical and metals industries as a heat-transport fluid, so experience with molten-salt systems exists in non-solar settings.

The molten salt is a mixture of 60 percent sodium nitrate and 40 percent potassium nitrate, commonly called salt-peter. The salt melts at 430 F (220 C) and is kept liquid at 550 F (290 C) in an insulated storage tank. The uniqueness of this solar system is in de-coupling the collection of solar energy from producing power, electricity can be generated in periods of inclement weather or even at night using the stored thermal energy in the hot salt tank. Normally tanks are well insulated and can store energy for up to a week. As an example of their size, tanks that provide enough thermal storage to power a 100-megawatt turbine for four hours would be about 30 feet tall and 80 feet in diameter.

Conversion Rates From Solar Energy To Electrical Energy:

Of all of these technologies the solar dish/stirling engine has the highest energy efficiency. A single solar dish-Stirling engine installed at Sandia National Laboratories National Solar Thermal Test Facility produces as much as 25 kW of electricity, with a conversion efficiency of 31.25%.

Solar parabolic trough plants have been built with efficiencies of about 20%. Fresnel reflectors have an efficiency that is slightly lower (but this is compensated by the denser packing).

The gross conversion efficiencies (taking into account that the solar dishes or troughs occupy only a fraction of the total area of the power plant) are determined by net generating capacity over the solar energy that falls on the total area of the solar plant. The 500-megawatt (MW) SCE/SES plant would extract about 2.75% of the radiation (1 kW/m?; see Solar power for a discussion) that falls on its 4,500 acres (18.2 km?).[67] For the 50 MW AndaSol Power Plant that is being built in Spain (total area of 1,300?1,500 m = 1.95 km?) gross conversion efficiency comes out at 2.6%.

home2 home item4a1 item4a aboutus2 aboutus contact contact2